Machine Learning-Based Tools for Wind Turbine Acoustic Monitoring

نویسندگان

چکیده

The identification and separation of sound sources has always been a difficult problem for acoustic technicians to tackle. This is due the considerable complexity that made up many contributions at different frequencies. Each specific frequency spectrum, but when sounds overlap it becomes discriminate between contributions. In this case, can be extremely useful have tool capable identifying operating conditions an source. study, measurements were noise emitted by wind turbine in vicinity sensitive receptor. To identify turbine, average spectral levels one-third octave bands used. A model based on support vector machine (SVM) was developed detection turbine; then artificial neural network used compare performance both models. high precision returned simulation models supports adoption these tools as characterization environments close turbines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced machine learning methods for wind erosion monitoring in southern Iran

Extended abstract Introduction Wind erosion is one the most important factors of land degradation in the arid and semi-arid areas and it is one the most serious environmental problems in the world. In Fars province, 17 cities are prone to wind erosion and are considered as critical zones of wind erosion. One of the most important factors in soil wind erosion is land use/cover change. T...

متن کامل

Application of Machine Learning Technique in Wind Turbine Fault Diagnosis

Wind power has become one of the popular renewable resources all over the world and is anticipated to occupy 12% of the total global electricity generation capacity by 2020. For the harsh environment that the wind turbine operates, fault diagnostic and condition monitoring are important for wind turbine safety and reliability. This paper employs a systematic literature review to report the most...

متن کامل

Acoustic Emission Condition Monitoring: an Application for Wind Turbine Fault Detection

Low speed rotating machines which are the most critical components in drive train of wind turbines are often menaced by several technical and environmental defects. These factors contribute to mount the economic requirement for Health Monitoring and Condition Monitoring of the systems. When a defect is happened in such system result in reduced energy loss rates from related process and due to i...

متن کامل

Monitoring Wind Turbine Vibration Based on SCADA Data

Three models for detecting abnormalities of wind turbine vibrations reflected in time domain are discussed. The models were derived from the supervisory control and data acquisition (SCADA) data collected at various wind turbines. The vibration of a wind turbine is characterized by two parameters, i.e., drivetrain and tower acceleration. An unsupervised data-mining algorithm, the k-means cluste...

متن کامل

Crack Monitoring of Operational Wind Turbine Foundations

The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these crac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11146488